Skip to content

dsp

samplerate_converter

samplerate_converter class

template <typename T> samplerate_converter

Sample Rate converter

Source code
template <typename T>
struct samplerate_converter
{
    using itype = i64;
    using ftype = subtype<T>;

protected:
    KFR_MEM_INTRINSIC ftype window(ftype n) const
    {
        return modzerobessel(kaiser_beta * sqrt(1 - sqr(2 * n - 1))) * reciprocal(modzerobessel(kaiser_beta));
    }
    KFR_MEM_INTRINSIC ftype sidelobe_att() const { return static_cast<ftype>(kaiser_beta / 0.1102 + 8.7); }
    KFR_MEM_INTRINSIC ftype transition_width() const
    {
        return static_cast<ftype>((sidelobe_att() - 8) / (depth - 1) / 2.285);
    }

public:
    static KFR_MEM_INTRINSIC size_t filter_order(sample_rate_conversion_quality quality)
    {
        return size_t(1) << (static_cast<int>(quality) + 1);
    }

    /// @brief Returns sidelobe attenuation for the given quality (in dB)
    static KFR_MEM_INTRINSIC ftype sidelobe_attenuation(sample_rate_conversion_quality quality)
    {
        return (static_cast<int>(quality) - 3) * ftype(20);
    }

    /// @brief Returns transition width for the given quality (in rad)
    static KFR_MEM_INTRINSIC ftype transition_width(sample_rate_conversion_quality quality)
    {
        return (sidelobe_attenuation(quality) - 8) / (filter_order(quality) - 1) / ftype(2.285);
    }

    static KFR_MEM_INTRINSIC ftype window_param(sample_rate_conversion_quality quality)
    {
        const ftype att = sidelobe_attenuation(quality);
        if (att > 50)
            return ftype(0.1102) * (att - ftype(8.7));
        if (att >= 21)
            return ftype(0.5842) * pow(att - 21, ftype(0.4)) + ftype(0.07886) * (att - 21);
        return 0;
    }

    samplerate_converter(sample_rate_conversion_quality quality, itype interpolation_factor,
                         itype decimation_factor, ftype scale = ftype(1), ftype cutoff = 0.5f);

    KFR_MEM_INTRINSIC itype input_position_to_intermediate(itype in_pos) const
    {
        return in_pos * interpolation_factor;
    }
    KFR_MEM_INTRINSIC itype output_position_to_intermediate(itype out_pos) const
    {
        return out_pos * decimation_factor;
    }

    KFR_MEM_INTRINSIC itype input_position_to_output(itype in_pos) const
    {
        return floor_div(input_position_to_intermediate(in_pos), decimation_factor).quot;
    }
    KFR_MEM_INTRINSIC itype output_position_to_input(itype out_pos) const
    {
        return floor_div(output_position_to_intermediate(out_pos), interpolation_factor).quot;
    }

    KFR_MEM_INTRINSIC itype output_size_for_input(itype input_size) const
    {
        return input_position_to_output(input_position + input_size - 1) -
               input_position_to_output(input_position - 1);
    }

    KFR_MEM_INTRINSIC itype input_size_for_output(itype output_size) const
    {
        return output_position_to_input(output_position + output_size - 1) -
               output_position_to_input(output_position - 1);
    }

    size_t skip(size_t output_size, univector_ref<const T> input)
    {
        const itype required_input_size = input_size_for_output(output_size);

        if (required_input_size >= depth)
        {
            delay.slice(0, delay.size()) = padded(input.slice(size_t(required_input_size - depth)));
        }
        else
        {
            delay.truncate(size_t(depth - required_input_size)) = delay.slice(size_t(required_input_size));
            delay.slice(size_t(depth - required_input_size))    = padded(input);
        }

        input_position += required_input_size;
        output_position += output_size;

        return required_input_size;
    }

    /// @brief Writes output.size() samples to output reading at most input.size(), then consuming zeros as
    /// input.
    /// @returns Number of processed input samples (may be less than input.size()).
    template <univector_tag Tag>
    size_t process(univector<T, Tag>& output, univector_ref<const T> input)
    {
        return process_impl(output.slice(), input);
    }

    KFR_MEM_INTRINSIC double get_fractional_delay() const { return (taps - 1) * 0.5 / decimation_factor; }
    KFR_MEM_INTRINSIC size_t get_delay() const { return static_cast<size_t>(get_fractional_delay()); }

    ftype kaiser_beta;
    itype depth;
    itype taps;
    size_t order;
    itype interpolation_factor;
    itype decimation_factor;
    univector<T> filter;
    univector<T> delay;

protected:
    itype input_position;
    itype output_position;

    size_t process_impl(univector_ref<T> output, univector_ref<const T> input);
}

https://github.com/kfrlib/kfr/blob//include/kfr/dsp/sample_rate_conversion.hpp#L53

sidelobe_attenuation function

static ftype
sidelobe_attenuation(sample_rate_conversion_quality quality)

Returns sidelobe attenuation for the given quality (in dB)

Source code
static KFR_MEM_INTRINSIC ftype sidelobe_attenuation(sample_rate_conversion_quality quality)
{
    return (static_cast<int>(quality) - 3) * ftype(20);
}

https://github.com/kfrlib/kfr/blob//include/kfr/dsp/sample_rate_conversion.hpp#L76

transition_width function

static ftype
transition_width(sample_rate_conversion_quality quality)

Returns transition width for the given quality (in rad)

Source code
static KFR_MEM_INTRINSIC ftype transition_width(sample_rate_conversion_quality quality)
{
    return (sidelobe_attenuation(quality) - 8) / (filter_order(quality) - 1) / ftype(2.285);
}

https://github.com/kfrlib/kfr/blob//include/kfr/dsp/sample_rate_conversion.hpp#L82

process function

template <univector_tag Tag>
size_t process(univector<T, Tag> &output,
               univector_ref<const T> input)

Writes output.size() samples to output reading at most input.size(), then consuming zeros as input. @returns Number of processed input samples (may be less than input.size()).

Source code
template <univector_tag Tag>
size_t process(univector<T, Tag>& output, univector_ref<const T> input)
{
    return process_impl(output.slice(), input);
}

https://github.com/kfrlib/kfr/blob//include/kfr/dsp/sample_rate_conversion.hpp#L154


Auto-generated from sources, Revision , https://github.com/kfrlib/kfr/blob//include/kfr/